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, ABSTRACT
e

The problem of neutralizing an lon beam 1s analyzed
within the framework of a one-dimensional collision-free
theory, The character of steady state solutions obtained
depends upon the ratlo between the mean thermal speed of the
electrons and the lon velocity.

When the 1ons are faster, excess electrons are returned
to thelr source from a finite distance behind the electron
emitter and the flow of charges 1s unidirectional (beam 1like)
further downstream.

When the electrons are faster, a "floating target'" must
be postulated downstream to intercept electrons and 1lons
at equal rates and to return excess electrons to the emitter.
In this case the flow pattern of the electrons is'plasma
like!,

Both beam-like and plasma-like states are found to be
unstable with respect to small perturbations. Thus the

plasma drlving a space vehlcle cannat be in a quiescent state,. Hetrlo

I. INTRODUCTION
The success of ion propulsion for space vehicles depends
on a positive solution of the problem of neutrallzation.
Unless electrons and ions merging from the nozzle of the space
ship at equal rates mix to form a neutral plasma, these charges

are returned by static flelds bullding up behind the vehicle,
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The single most important parameter characterizing the state
of the emerging plasma turns out to be the ratio between the

mean thermal speed of the emitted electrons and the exhaust

velocity of the 1lons,

g =<fv_ /v, (1)

The limiting cases of very cold and very hot electrons have

been discussed extensively 1in the 11terature1’2’3.

In the 1imit o = O the electrons may be treated 1like a
beam of initial velocity v =X tv_1| > and their density q_
1s uniquely determined by the current J_ of the electron beam

launched into the ion stream

a_ = J_/v_ (2)

Space periodic potential distributions which have been obtained

in this case are characterized by rather arbitrary assumptions

on the electric field at the injection plane of the electrons,

In the 1imit o = o the electrons may be treated as a
complete plasma and the scale height law based on a local Maxwell
distribution of velocities 18 generally assumed to hold for the

electron density:
q_ = q exp(-e@/kT_) (3)

Steady state solutions obtained in this case lack.an
explanation of exactly how a local Maxwell distribution of electron
velocities 1s establishedB.

In general the exhaust velocity of the 1lons v,
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is fixed by an optimizing procedure involving the components

of the space vehicle and the length of its missionu. For
cesium lons and electrons originating from a tungsten emitter
the parameter ¢ 1s thus pretty well confined to a region near
unity 1in which neither the scale height law nor the equations
of beam dynamics hold for the electrons, It 1s the purpose of
this paper to obtain steady state solutions in this transition
region and to investligate their stability against small
perturbations.

The method of investigation 1is based on discontinuous
velocity distributions obtalned from the one-dimensional,
time-independent Boltzmann equation for preconceived potential
distributions, These veloclty distribution functions are
required to match Gauss distributions at the emitters and to
comply with the space charge equation. An element which 1is
extraneous to the concept of a plasma in free space has to be
postulated for the consistency of these solutions, namely a
"floating target" or equivalent mechanism for recombination of
charges. The self-consistent potential distributions thus
obtained are not the only ones possible; however, certaln
ambiguities such as those discussed above 1in the limiting cases
0 - 0and g = «» do not arise. Data obtained for three different
designs o = 2, 1, 1/2 of an ion motor are collected in Table I,

Finally the stability of these distribution functions is
tested by investigating the dispersion relation for small
perturbations in regions of nearly uniform potential., All the D.C.
solutions obtained are found to be unstable within the framework

of the one-dimensional theory presented.
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II, THE VELOCITY DISTRIBUTION FUNCTIONS AND THEIR MOMENTS

A schematic outline of an ion motor is shown in Fig. 1,
Corresponding diagrams of potential versus distance are shown
in Figs.2(®)and3a). Ions emitted from the anode a pass through
the accelerator grid ¢, and the electron emitting grid c.

A small blas applied to the electron emitter is sufficient

to prevent electrons from interfering with the operation of
the ion gun a < x < Cq- A larger blas may be used to in-
corporate an Accel.-Decel. system into the design, allowing
for larger electrode spacings, Enough electrons are supposed
to be supplied such that the electron emitter is positive
with respect to its immedlate surroundings. A potential mini-
mum 1s thus formed at x = ¢, behind the lon motor. Whether it
is an absolute minimum as in Fig.Zh)or a relative minimum as
in Fig. 3@ depends on whether the mean thermal speed of the
electrons 1s larger or smaller than the ion exhaust veloclty,
as will be found in due course. In an actual space environ-
ment no net current can be drawn from the ion motor. To
simulate this conditlon in an experimental setup, a floating
target?, intercepting and recombining electrons and 1lons at
equal rates, 1s placed at a position x = s in Fig.z@ﬁor any
position x > ¢, in Fig,¥a)i The redundancy of this target and
the self-consistency of these potential distributions are the
subjJect of this study. Alternative potential distributions,
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allowing for large charge separations, such as those shown

in Fig.2(a) by broken lines will be omitted in this paper.

The veloclty distributilons ft(v) of electrons and ions
moving through regions of arbitrary potential are found from

Boltzmann's transport equation

+ R 3
vyaf_ y e gaf _o gp..928 (%)
ax m,  Jv dx
We recollect the properties of this differential equation and
its solutions:
1) The characteristics are given by the energy integral
Lm, v2 fep(x) = Im, vi(x,) * ed(x,) (5)
2 T 2 '+ £V o’ = o

where v+(xo) and ¢(xo) are the 'initial velocities' and the

potential at a given position x = X3 With a knowledge of the
potential distribution @(x) the flow lines of electron in v-x

phase space can be drawn immediately as shown in Figs. 2(b) and 3(b)
and corresponding diagrams could be constructed for ions,

11) Any function of total energy 1s a solution of (4), i.e.
for electrons,
- - v P
F (x,v) = F(n_ Y - ef(x) + eflx,)) (6)

111) 1If Fi(xzv) and Fg(xzv) are :?gotwo solutions of (4),
then 3. their sum and products are,solutions of (4)



- 6 -

iv) Let H(x) = 1/2 (1+sgn(x)) be the unit step function,
then by definition

, ,
Ho_ -2 (x)+ed(x,) (s -(32(x)-52 f’(xo))l@ﬂ(-v-@n%ﬂ(”'%?“""091/27 ()

1s a solution of (4). Not only is the sum of the step functions
in (7) a solution of (4) but also each term separately as
can be shown immediately by inserting into (4) and using the
fact that dH(x)/dx = 5(x) and xb(x) = o.§ These solutions
demonstarte the fact that discontinuities in the solutions of
linear partial differential equations can occur only along
characteristics, Step functions are used convenlently to
describe the reflection and trapping of particles 1n potential
wells, as for electrons emitted from the cathode ¢ and returned
at or before x = c, in Figs, 2(b) and 3(b).
By combining solutions in the form
f'(x,v>=ZF;<x,v)H@{ﬁ,—‘*-;d(x)-?,,EsA(ag,))” HG(22(0)- 2250 ) ). ()
v
almost any preconceived idea of what the potential distribution
in space should be can be made self-consistent with the space
charge equation
dE

€0 3% = © J £t (x,v)dv-e I £7(x,v)dv (9)

7

as shown in a paper by Bernstein et al,. To match the boundary
conditions in ion engines with assumed d.c. potential variations

as shown in Figs, 2(a) and 3(a), we have in particular



the truncated Gausslans
2

1/2
£*(x,)=n, () (zrpr) exp(-';-';5}’:-F%?(x)ﬁgm)r(vﬁ-iml)-,%(x))” ) wa
(10)

2
“(x,v)en_ (o) (gapr)” ol Trrr A0 Do (2o (x) 2280, ) )y xce
) ) (11)

2 2 1/2
f'(x,v)=n_(c)<2_:n?-l?r:>l/exp<_ %ﬁ(c))i@-(mifgj(x)-;_fg(cz)) ) e (12)

where the following sign convention has been adopted and willl

be used consistently throughout this paper

1/2
sen(#(x) - #(¥)) 2 _ senlx-y) (13)

By this convention the characteristic separating empty from
occupied regions in phase space Figs, 2(b) and 3(b) are
described most convenlently.

The following assumptions are impliled in writing the

distribution functions in this form:
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1) Both electrons and ions are emitted with a Gausslian
distribution of velocitiles,.
11) The accelerator grid ¢, 1s transparent to both electrons
and ions, which can be achieved by focusing.

111) The electron emitting grid c¢ 18 transparent to lons but
not to electrons. This implies that electrons emitted from the grid
are reabsorbed upon return,

iv) No electrons are trapped in regions such as ¢, <xX c3
in Fig.Za)since in the absence of fluctuations or collislions

no mechanism is available to f1l1 these traps.

To investigate the self-consistency of the preconcelved potential
distributions shown in Figs.Zh)and}é)we need to discuss space
charge density current density and kinetlc pressure which are
given by the first three moments of the distribution functions
(10, 11, 12).

q(x) = e I f(x,v)dv , J =e j vE(x,v)dv, p=m I vzf(x,v)dv {1%)

These integrations are easily performed in terms of error functlons
and are conveniently expressed with normalized charge and pressure
functions defined by:

2

Q(x) = e* erfe(x) (15)

P(x) = ZW'l/zx + Q(x) (16)
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A plot of these function is shown in Figs. 4 and 5 together
with convenient approximations for large positive and negative
values of x, We shall recognize these limlits as the beam

and plasma 1imit respectively. A simple approximation Pl(x)

1/2 2
P(X) Pl(x) =1+1/2 m/"°x +x

1+ 1/2 vl/zx

, x> -0.6 (17)

which bridges the gap between these limits is also shown in
Fig. 5. Further mathematical information on these functions 1s
given in appendix A,

In terms of these functions the moments (14) are simply

given by:
3, = 3, exp (ﬁ: ala) - g d(a,)) x> a (18)
3= g exp(gm- Bley) - pf B(e) X < (19)
3. = 3. exp(gg— #cy) - g () <> o (20)

a (@) = r (s - @ 9D kv (@)

<lv+|>

Lalx) = 53-|> (G 90 = g ) ) xce (a2)

a.(x) = == (i 8(x) - g Kep)) )

<|v_1>

»
v
o

(23)
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| kT, J
| pr(x) = = oy B (R 8e) - g B)YE) x> (2w)
s
| ) = = iy WG A - g B )Y) x<e (25)
kT_ 1/2
p.(x) = == = PO Bx) - g 8lep)) ) x> (26)

As a matter of convenlence, the number densities n_(a)
and n_(c) have been eliminated from these formulae by use

of the saturation current densities Jsi and the mean

thermal speeds <|v+|> defined by:

1/2
Jop = 1/2 n(a) <[V, )> v, > = (Qﬁ:) (27)

/2
Joo = /2 n_(a) <Iv_|> - <lv_> = (ﬁk_'l‘_-_)l (28)
Trm-
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III. THE CONDITION FOR CHARGE NEUTRALITY

The design of an ion motor can be split into three

parts

1) The Ion Gun (a < x < ¢

l)‘
Within this region the condition

e¢(al) - ed(x) > kT, , a<x<ey (29)

holds almost everywhere and the space charge density can be
calculated from the asymptotic approximation (A5)
Q(x) = v"l/zx'l, giving

_ ___;it__ -1/2( e ~ e 1/2_ Jy
W) - - s (7)) - grf(x) " - e
where
1/2
vi(x) = - Gla)) - £58(x) (31)

In this 1imit the temperature of the ions drops out and
almost all the ions at a given position x have the same
velocity v+(x) as given by f}l).

The gun design based on this beam model is well described
in the literature and will not be discussed any further8. We

quote Langmuir Child's law for planar flow

i 1/2 3/2 . -2
b =2 @) (ptay) - te))” (1 (32)
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Values of current J+,'voltage ¢(al)-¢(cl) and distance c,-a;
for 3 typical designs are given in table T.
11) The Electron Tngg_(cl < x<e).

A positive bias ¢(c)-¢(c1) > 0 1s applied to prevent
electrons from reaching the ion gun., In the following we shall
assume this blas to be small such that the ion velocity (31) 1s
nearly constant throughout x > - This assumption simplifies
the algebra considerably but excludes Accel.-Decel, systems
from further consideration. We note that the magnitude of the
emitter bias essentially does not effect the problem of
neutralization and that the following theory can be easlily extended
to incorporate Accel.-Decel. systems, Since no net current
can be drawn from the lon motor into free space we have the

condition

J_ =1, (33)

for the down stream electron current. The upstream electron current
which manages to escape the trap 1s gilven by (19) and for an

efficlent trap we must have

£

= = exp (g #ley) - g ) = 7 << 1 (34)

J+
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To reduce the danger of charge separation and ion reflection such
as that assoclated with the potential diagram shown by the
broken line in Fig. 2(a), 1t 1s desirable to have a plasma formed with-

LR

in the trap. To establish neutrality we must have

q_(bl) = q+(bl), ¢y <y < ¢ . Thus with equations (22), (30),
(34) and ow <lu,l>/v+(bl) of order unity the following relation
is obtalned for the plasma potential ¢(b1):

d|q

1/2 <lv_|>
D7)

- (- () - 77— B(ey) —JW 1 (35)

Since the left-hand side is large we can use the 'scale height
law' for Q as gilven by the assymptotic term (A5),Q = 2 exp(xz),
shown on the left in Fig., 4, Together with (19) the

following chain of inequalities 1s thus obtained.

(36)
234 + <tv >

-2 eXPCi%:g(C)LE%:¢(c1):>2 exP(i%:ﬁ(bl)“§§:¢ > "3 v+Zbl5

We find that a minimum electron saturation current density

<lv_|>

Js- 2 7 v, (by I+ =‘% I+ (37)

i8 required to satisfy these conditions,
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Values of plasma potentials ¢(bl)-¢(cl) and emitter bilas
¢(c)-¢(c1) obtained from (36) for a trapping ratio T = 0.0l
and a set of velocity ratios ¢ = 2, 1, 1/2 are of the order
of several kT /e as 1listed in table I,

For large distances ¢-cy between emitter and accelerator
grid alternative potentlal distributions, such as the one
shown by the broken line in Fig. 2(a) may become possible, For
this particular potential distribution the Ansatz (10) and (11)
breaks down and more general distribution functions of the type
(8) must be used. These peculiar potential distributions have
been discussed in the 11terature2 for the case of cold electrons
and lons and are likely to be unstable, An extension of this
work to hot electrons and ions 1is outside the scope of this
paper.

111) The Propelling Plasma (x > c).

With electrons and ions lost at equal rates from the
ion motor, (33), the condition of charge neutrality within the

escaping plasma q (b2) = q+(b2) becomes, using (23) and (30)
1/2 <jv |>
Q<'<R‘T‘¢ (b3) - & () ) = —'l— ~ 0 (38)

We remember that o 1s of order unity as given by economical
considerations and therefore neither of the approximations to

Q shown in Fig, 4 can be used to invert this equation. The physical
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significance of this fact 1s that neither the f'scale height!

law nor the equations of beam dynamics apply in this case.

In using a table of Q(x) or the plot in Fig. 4 to solve
equation (38) for ¢(b2), we must keep track of our sign
convention (13). Thus if ¢ > 1 we have b, < ¢, as in

Fig. 2. If on the other hand, ¢ < 1 we have b2 > ¢,

as in Fig. 3. Subsequently these two cases will be referred

to as 'plasma 1ike' and 'beam like' respectively. For practical
values of o, the plasma potential ¢(b2)¢(c2) is found to be

smaller than kT_/e as seen in table I,

IV, THE PRESSURE BALANCE

With the charge densities-q$ being known functions of
potential @, self-consistency can be established by integrating
the space charge equation (9). An integral of this differential
equation can be obtained immediately from first principles,
Multiplying Boltzmann's Transport equation (%) with vm, and

t
integrating over all velocities we have with f(#e) = 0

7&; f m, v2 ft(x,v)dv =1 E(x)q+(x) (39)

Adding both equations and using (9) gives

2 (py+p.) =E(a,-a)=¢ EL (40)
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An integration finally ylelds the 'pressure balance'

2
E dag

Since the kinetic pressures pt are known functions of potential

only, the solution of (41), or of Poisson's equation (9), 1is

1/2 -
Ci; )’f <§+(¢) + p_(4) + const.> 1/2d¢ = X + const. (42)

Numerical methods must be used to evaluate this integral.

As an example we establish self-consistency within the
electron trap ¢, < x <c. Introducing kT_/e and the Debye
length A :

2 kT_ <|v_|> KT _

= eO s J_ = €° W ()'I'B)

as scaling parameters we define

n(x) = g B(x) - g5 Ble;) , x - cp = AL (14)

In these units the electron (25) and ion (24) pressures become

kT “J .
P == s p(-m/2(x)) (45)
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kT, J, 1/2 1/2
po(x) = =t iy W) (lay)-n)) ) ~ (46)

-1/2 XTI dy 1/'2 1/2 K. J v 7

In writing (46) only linear variations of the ion veldcity
(31) have been taken into account within the electron trap.

With _J/J, =7 and <|v_|>/v+(cl) s~ 0 the pressure balance (41) reads

< ) _frp(.nl/z)-on_'r+c (47)

The integration of this differential equation was performed on
the Stanford IBM 7090 digital computer using an Adams Predictor-
Corrector procedureu. Plots of pressure, electric fleld and
distance versus potentlal obtained for T = 0.01 and three
different velocity ratios o = 2, 1, 1/2 are shown in Fig. 6.

The constants of integration C have been adjusted such that
the electric fileld at plasma potential ¢(b1) 18 the same in all

three cases, The corresponding distances c-cq between cathode

and accelerator grid are also listed in table I,

V. PLASMA-LIKE STATES ¢ > 1

To integrate the pressure balance within the regilon x > ¢

behind the 1on motor we introduce again the .scaling parameters
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kT_/e and the Debye length \ defined in (43). We shall,

however, count normalized potential and distance from a different

origin x = c2.

n(8) = g B(x) - g3 Blcy) 5 x = cy = AE (48)
Taking only linear variations of the ion velocity (31) into
account we have from (24) and (26) in anology with (45)and (46):

kT_ . 1/2
P = =g B (49)

kT_ 3, <iv>
1
e <|v_|> Vilep)

p, = const. - (50)

/,

With J./§, =1 ananVJz/%jcz) 2 0 the pressure balance (41) becomes

1CO I CORPRIRY.

¢ + (1-0)n - 3 7 L/2P/2 st (51)

i

We have used the first few terms of the power series (A4) for

P to demonstrate the essentlal difference between plasma-like and
beam-like states, 0 < 1 and o > 1, Postponing the discussion of
beam-1ike states to the next section we take for the present

0 > 1., With our sign convention (13), sgn 1 1/2(*;) = sgn(§),
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we then find a pressure minimum in the region ¢ < x < Co.
This situation 18 demonstrated in a plot of pressure
versus potential for o = 2, shown in Fig., 7(a). Due
to(A3), this minimum occurs exactly at the plasma potential
¢(b2) as given by (38). The constant of integration used
in (51) must be selected such that the electric fleld 1s

real throughout the region ¢ < x < 02 as shown in Fig. T(v).

czc =1+an- (), n= b)) - groley) (52)

Diagrams of potential versus distance obtalned by numerical
integration of (51) for two values of C are shown in Fig. T(c).
For C > Co the distance between the electron emltter at

X = ¢ and the 'floating target! at x = Cy is finite, as

in a Laboratory experiment, The results of several integrations
allow one to pick the appropriate constant C for any given distance
of the target. As C'"Co one approaches the case of an
infinitely distant target. Yet the floatlng target 1s not
redundant in this cast, It provides for instant recombination of
electrons and ions, thus producing a potential drop (sheath) to
turn the excess electrons back as shown in Fig,2(b). Several
arguments may be advanced to the existence of this state in

free space:
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1) The effect of volume recombination may provide a
gradual potential drop along the plasma column thus
causing excess electrons to be returned.

11) A potential drop (sheath) i1s formed at the head
of the advancing ion beam which causes excess electrons to be
returned3.

To evaluate the first assumption 1) we use a simple
model describing the effect of recombination, Assuming
neutrality n_=n_ = n(bz) and common drift velocity <v_> =

v+(b2) for both spéciles we have

-1
d 2 n(b,)

nv, = -an n=n{b,)(1+a x (53)
Ix T+ ’ 2 ( v, (b,) >
where a, the coefficient of recombination, is less than 2.10-11
cm'BBec'l.10 The scale on which recombinations take place

1s thus glven by

v, (by) ) evi (s4)
Xp =1 n+152) "o Jt 5

For typical ion motors this distance turns out to be 1n excess
of 900 km as 1listed in table I. Thus it appears that the
effect of volume recombination may indeed Justify the omission
of the floating target and also secure the validity of our
d.c. solution,out to considerable distances behind the space

vehicle, provided it is stable.
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To assess the validity of assumption 1i) we have tried

to solve for the d.c. state in a frame of reference moving with
the ions, Electrons are allowed to escape from and return to the
head of the ion beam, very much like in the case of an

electron emitter placed in free space, A self-consistent

d.c, state 1s found to exist in the moving frame, However,

it 1s not possible to match this solution to the electron emitting
grid within the 1lon motor, simply by applying a Galileo trans-
formatlion. We conclude that the sheath at the head of the
advancing plasma beam 1s necessarily of an oscillating nature,

The question of stabllity will be discussed in Section VII.

VI, BEAM-LIKE STATES ¢ < 1

Proceding with our discussion of equation (51) we find
a pressure maximum to exlst for o < 1 1n the region x > o
behind the potential minimum g(c,) as shown in Fig.8a). Again
due to (A3), this maximum occurs at exactly the plasma potential
¢(b2) as given by (38). If no auxiliary 'grids' are to be used
behind the electron emitter the constant of integration C in
(51) 1is necessarily equal to O, For x > co the relation between
electric field and potential is cyclical as shown in Fig.8§b) and
the potential becomes a perlodic function of dlstance as seen in

Fig. 8(c). A1l the excess electrons are returned before they reach
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the potentlal minimum a finite distance downstream and the flow
of electrons and ions becomes unidirectional thereafter as
shown in Fig. 3b). The floating target 1s thus redundant and
this state may actually exist in free space, provided it
is stable,

The potential diagram shown in Fig, 8(c) has been obtained
by numerical integration of (51) for ¢ = 1/2, C = 0, However,
by means of the excellent approximation Pl(x) (eq. (17), Fig. 5)

an analytic solution can be found in the periodic region

2 1/2
1cdny 1+ 1/2(mn) + M _
2 <'d"~:7> 1+ 1/2(1%1)1/2 on -1 (55)

With (wq)l/z as auxiliary variable, a solution satisfying the

boundary condition § = 0, M = 0 1s obtained in the form

(v/2)1/203/2€ = 201/2(1--0)1/2 + arcsin(1-2¢) (56)
- 61/2<2-2cr-c(1rn)1/2>1/2<2+(1r’n)1/2>1/2-arcsin<l-20'(7rﬂ)1/2>

Values of potential obtained from (56) are compared in

Fig. 8(c) with the results of numerical integrations of (51)
using for P the rigorous expression (16). Note that (56)

is good also for some negative values of §. A study of the
inflection points and maxima of the potential diagram as given

by (56) yilelds- the following approximations:
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1) Plasma potential at x = b,

11) Maximum potential at x = a,

N = g Blay) - g Bley) = (1 - )

(58)
111) Period ¢z - ¢
°2°° 1T:l./'2<‘z>3/2 = + 261/2(1 0)1/2 + arcsin(1-20) (59)
Using the definition ¢ 5<Eﬁwﬁ&(°2) and Langmuir-Child's
law (32) we have also
1/2 a))-glcy)3/4
\ 3 2 53/2
-2 G Cma ) © (60)
Thus we obtain from (57), (58) and (59) in the 1imit of cold
electrons o~ O
g(o,)-g(c5) ) ;___ or v_(b,) = v,(c,) (61)
Blay)-(cy) B+
- (62)
¢(a2) ¢(02)4= L - or v-(az) = 2v+(cz)

B(a))-Blc)) P+
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3¢ 1/2 3/4 1/2
1‘ai 11(2 ) (a ) ¢(017> "(%) (63)

These formulae agree with results published previously on the

problem of mixing cold electrons and ions1 2
To assess the effect of electron temperature, it 1is convenient

to normallze plasma potential, maximum potential and period

to their respective values for cold electrons, Thus rewriting

(57), (58) and (59) we have

(Bo2)-Hep) hot l<1_46+(1+80,)1/2‘>2 (64)
(Boy)-8c)) o0 |

(#(ag)-2cs) Do
(B(ag)-B(c3) )oora

< 3'°2>not S~
Cfs —;j;old 2 "

These ratios are plotted in ?1g. 10 and for <|v_| > =V

~ (1-0')2 (65)

2
arcsin(1-2g) + %g}/ (l-cr)l/2 (66)

+
plasma potential, maximum potentlal and period are seen to

vanish, In this bordeﬂpine case the plasma becomes uniform in

space x > s as shown in Fig.le The variation of potentlal
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versus distance for x < Cp has been obtained by numerical
integration of (51) for ¢ = 1, C = O.

Before we conclude these sections on d.c. states, we
add a few remarks on the thrust of the ion motor, It is
evaluated by adding up the pressure on the accelerating and
electron emitting grids. The pressure of the ions on the

acceleratoar grid is given by

=]

1 2 2 +
p(c;-0) = 7 € E°(cy~0) = mn (c)vile]) = g= 3, v,(eq) (67)
with numerical values listed in table I, 'The contribution
due to the neutralizer is found from the pressure balance (42),

In normalized units we have

EETecHRNCNE.)

-p(cl+0)+p(c-0)-p(c+0)
p(Cl—O)

) (68)

=c+0

For small emitter bilas this contribution was found to be

negligibly small.

VII., STABILITY ANALYSIS

Within a uniform plasma of infinite extension a small signal
analysis based on longitudinal perturbations oc exp(iwt-1kx)

yilelds the dispersion relation
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2 o+ 2 -
F
) wp+ (v) + wy F (v)

i dv (69)
- %)

where w4+ are the normalized plasma frequencies and F*(v)

the normalized distribution functions of the electrons and
ions nespectivelyll. This dispersion relation is well defined
in the 1imit Imw—~0 , which arises when one employs Laplace
analysis in time,

We have seen that in our case the d.c. analysis predicts
an infinite region of almost uniform potential within the
plasma emerging from the ion motor, The deviations from
plasma potential were found to be very much smaller than
kT_/é for practical values of the parameter o, Application
of the dispersion relation (69) is therefore Justified using

2 . J

“p, © E;r?T;q't(bZ) “TE v © (70)
F(v) = t5(0y,v)/ [ £5(0y,v)av = er¥(by,v)/a, (b)) (71)

with 10, 21; 12, 23; 30, 31, 38 we have

m

FH(v) = ;%1 v+(b2) exp(?ET: vi(bz) - 7§T: v2 ' v-v+(b2)> (72)

2
F(v) = g vi(y) exp(n(n)- e - 7 20p) (713)
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A plot of the weilghted distribution function

ap F(v) = wf)_ F(v) + w§+F+(v) (T4)

in the numerator of (69) is shown in Fig, 11 for

0 =2 and ¢ = 1. Due to a criterion by Penrose’}l2 and
Buneman13 we suspect that this doubly peaked distribution
function 1s unstable., However, direct application of

this simple criterion fails in our case due to the dis-
continuities in the distribution function F(v). To explore
the existence of growing modes we apply Cauchy's theorem
to (69) on a contour enclosing the lower frequency half
plane Imw < O. In this process we make use of the fact

that m+vf_/2kT+ >> 1 so that for all practical purposes

Ft(v) may be approximated by a Dirac §-function:

P (Do v, (03 exa(ih v, (0)(r, (o) -v ) H(v-v, (0 )0 (iv, (5))  (75)

With the 1ons thus behaving like a monoenergetic stream of

particles the dispersion relation becomes:

-2 -2
KZ = 2#’3/20'1 J@ exp(ﬂ(bz)-t2> (t- % Tr'l/2> dt%_(%- - ](D (76)
,nl/2 (bZ) :
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where

K=k <|v_|>/'wp , Q= w/mp , Im < 0O (77)

This integral cannot be evaluated in closed form. However,
the singularities arising for ImQ = O  can be extracted and
the remaining integral computed (Appendix B). A plot of
the right hand side of the dispersion relation (76) in the
complex K2-p1ane is shown in Fig. 12 for the 1limit of real
frequencies ImQ - O  and a velocity ratio ¢ = 2. The running
parameter in this graph 1s the wave velocity Q1/K, with K
real. Note that for any positive wavenumber K the point
K2 is encircled once as 1 varies from -« to +« and then
along a large semicircle in the lower frequency half plane,
Thus, for any positive wavenumber K, the dispersion relation
(76), has precisely one solution 0 with ImQ < O. Similar
diagrams are obtained for other values of ¢. We thus con-
clude that the one-dimensional d.c. states derived in the
previous sections are all unstable,

A crude approximation estimates the wavenumber for which

11

maximum growth occurs as k s w /v+, The linear scale

p_
of these instabilities 1s thus of the order of several Debye
lengths:

Xp = 2vv+/wp- = 27T <|v_|>/(owp ) (78)



- 29 -

Within a few times that distance behind the 1ion motor
these oscillations wlll have reached the nonlinear 1limit.
Since Xp << X the effect of recombinations discussed in
section V 18 completely irrelevant. The question arises
whether the r.f, amplitude developlng behind the space vehicle
remains small compared with the accelerating potential of the
ions or becomes comparable to 1t. Accordingly the ion motor
would work continuously or in discrete puffs. One dimensional
computer simulations of the processes involved in the nonlinear
motion of electrons and ions predict continuous operation with
veloclty randomization and rather strorgpotential fluctuations
at electron plasma frequencylu’ls.

Instabllities have been observed recently in experiments
with cesium lon beams, using an electron emitting wire as

16. Os-

the neutralizing element and a floating collector
cillations near electron plasma frequency set 1in whenever the
neutralizer 1is removed to the edge of the beam in which case

the electrons are injected with higher than thermal energy. With
the neutralizer located at the center of the beam, the plasma

was found 1n an apparently stable state. The latter observation
i1s in contradiction with our prediction and the discrepancy

may arise froem the finite lateral size of the experimental plasma

not taken into account in the theory. We note, however, that
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fluctuations over a broad band of frequencies may still be
present in this experiment. These fluctuations are
associated with an increase 1in electron temperaturel7’18
and should be detectable elther by a probe or by noise
measurements, Future experimental work should be supplemented
by such measurements 1in order that the proper conclusions can
be drawn., Progress on the theoretical side 1s expected from

computer simulations of the nonlinear mixing process, the

finite size of the plasma being an integral part of the program,

VIII, SUMMARY OF CONCLUSIONS

The character of d.c. states arilising in the process of
neutralizing ions emerging at equal rates with electrons from
the nozzle of an 1ion motor depends critically upon o, the mean
thermal speed of the emitted electrons, .as compared to the
escape veloclity of the 1lons,

For small electron temperatures o < 1, excess electrons
are returned to the ion motor from a potential minimum a short
distance behind the space vehicle. The potentlal distribution
becomes perlodic in space thereafter,

For large electron temperatures o > 1, plasma-like

potential distributions are obtained behind the 1ion motor.
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A floating target 1is required in this case to reflect the
excess electrons back to their source, Recombinations
occuring a long distance behind the space vehicle may
1ift this requirement,

Arguments of whether or not these d.c. states do
exist in outer space find a unique answer when it is
learned that all are unstable with respect to small
perturbations, A large signal theory describing the
nonlinear mixing process of electrons and ions within
a plasma beam of essentially finite lateral dimensions 1is
required to interpret and project experimental results into

actual space environment,
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APPENDIX A: SERIES REPRESENTATION OF CHARGE AND PRESSURE
FUNCT LONS

The charge and pressure functions are defined by the

following integrals:

© 2 .2 2
Q(x) = 27'1/2 j eX gt = F erfc(x) (A1)
X
212 [° 2 x%-t2 -1/2
P(x) = 4br2/2 [ t2eX =P ap = 2771/ %% + q(x) (A2)
X
%—; = 2XQ (A3)

Representations in terms of power serles and asymptotic series
are obtalned immediately by writing the error function in
terms of confluent hypergeometrical functions of the first

(@) and second kind (Y), reSpectivelylg.

2
e* erfc(x) ©

2 2 '
- ex -27T-1/2X¢(1,3/2,X2)=ex _bm_-l_/ZXZ El_‘*il._ (zx)Zn

Q(x)

N
2 _1/2
w2 (1/2,1/2,x% )~ 2H(-x)e™ J—,lcizq)“ {2n): (25)-2n
n=0

where H(x) is the unit step function,
For numerical purposes Friedts Tables of the Hilbert

Transform of the Gaussian may also be used noting that Q(x) =
1 772 z(4x) %0

(Ak)

(A5)
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The simple approximation Pl(x) given by formula (19)
in the text 1s suggested by the fact that every confluent
hypergeometrical function can be expanded into continued
fractions. The actual procedure used to obtain Pl(x) is
to match the expression Pl(x) = (a + bx + cx2)/(d + ex)
with the power series {il)for small x and with the asymptotic
series(As)for large x. The error of thls approximation

is within 3 percent in the range -0.6 < x < +¢7.
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APPENDIX B: EVALUATION OF DISPERSION INTEGRAL

The integral (76) to be calculated is of the form

I '"i‘l'f dx, Imx = Imy = 0, Imz < 0, f(fe) =0 (B1)
Y (x-2z)

where f(x) 1s continuous for real x.

A partial 1ntegration yields

[ e[ TR o - S
Y (x-2) y'z y-e (B2)

@ '(z)  xf! )t i
[ - 2 [nie) 2 g

The first integral 1s singular but can be evaluated

o £t (z)  xf' (z) o e y-2
fy e A >dx £ (z) 4n (1472172 (B3)

where #n stands for the principal value of the logarithm, The
last integral is regular everywhere including the points x = y,z,o,

A more convenlent form for computation 1s obtained with the

substitutions
x=tg& y=tgmn z=tgst (B4)
© f"'(X)-f (Zl x dx = £'(t g "f" tg ¥ + f.(ts §)ts g g
I< X-z 1 + x° ‘[< tels- >d

(B5)



- 35 =

With
/2 '
y e [ £l(tg 8)-f (tg 5)
J(n,5) fﬂ te(2) as (B6)
we have
af!X2 d'=-f—'£-y—l-f"( )i y-Z
Iy (x-2) * T Yz = (1+&2)1/2 (BT)

+ J(arctg y, arctg z) - J(arctg y, 7/2)

and in the limit Imz~ 0

JP fiil_z dx £(y) - £'(z) 4n

, (xz)? T TE

%2-7)1.-72-‘ - inr f"(Z) H(z-y)

1y

+ J(arctg y, arctg z) - J(arctg y, 7/2) (B8)

where H(x) 1s the unit step function, This formula was
applied to evaluate (76) on the Stanford IBM 7090 digital
computer by using a simple Simpson procedure for I(Tm,%).
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Table I Data for Three Ion Motors

Ay o= 2 floating collector at cy-C = 190.4 A

Az: o0 = 2 floating collector at Co=C = @
B: o =1 no collector required
C: o = 1/2 no collector required

values obtalned by numerical integration of equ, X

approximate values may be obtalned from equ, X
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Fig. 2 (a) Potential Diagram of Ion Motor with Floating
Collector and
(b) Corresponding Electron Orbits for ¢ = <|v_t>/v+(b2) > 1
(schematic)
----2(a) alternative potential for large cathode
accelerator spacing c-c, and partial reflection

of ions,
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Fig. 3 (a) Potential Diagram of Ion Motor and

(b) Corresponding Electron Orbits for
g = <|v_|>/v+(b2) < 1 (schematic)
--- 3(b) orbits allowed for trapped electrons

(traps are empty under d.c. conditions)
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Normalized Charge Density Q(x) vs. Cutoff Velocity

0

v, of Gauss Distribution, x = r‘l/zvc/<|v_|>.

--- asymptotic laws: for x << O plasma-limit

for x >> 0 beam-limit
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Fig. 5 Normalized Kinetic Pressure P(x) vs, Cutoff
Velocity v, of Gauss Distribution,. x = w“l/zvc/<lv_l>.
--- asymptotic laws: for x << O plasma-limit
for x >> 0 beam-limit

analytic approximation equ. (17)
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Corresponding plasma potentials and pressure minima:
o =2 'n(bl.) = 4,60637 C, = 7.24696

1 3.91460 2.94692

0.5 3.22444 1.14248
in all cases C-C_ = 10722
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Corresponding plasma potential and pressure minimum:
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for C

0.265429, C, = 0.112197.

Cn floating collector at c,-¢c = =
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(a) Pressure, (b) Electric Field and (c) Distance

Within Propelling Plasma vs., Potential in Normalized Units
Trapping ratio T = _j/J = 0.01

Velocity ratio o

<v_{>/v, (cp) = 0.5

Corresponding plasma potential, maximum potential

and period:

03'02 =

12.5 X\

T\(bz) = 0.591483,

----8(c) approximate solution equ. (56)

n(a,) = 1.53999,
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Temperature ¢ = <|v_|>/v+(cz) in normalized units.
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Welghted Velocity-Distribution Function of

Electrons and Ions at Plasma Potential ¢(b2)
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Fig. 12 Plasma Dispersion Function equ. (76)

for a Veloclty Ratio o = <\v_1>/v+(02) = 2,

— wavenumber K as a function of real
wavevelocities /K in normalized units

= Wwavenumber K for almost real
wavevelocities O/K, ImQ} = 0", K > O.

ion resonance at f}/K = 0.5

electron cutoff at QI/K = -0.913165

ImK2= -0.581339




